Self-assembling of reduced graphene oxide platelets, as a tailored interconnected network within a natural rubber matrix, is proposed as a mean for obtaining nanocomposites with improved gas barrier, as compared to neat natural rubber. Interestingly, this nanocomposite structure results to be much more effective than homogeneous dispersion of graphene platelike particles, even at low graphene loadings. Such behavior is interpreted on the grounds of a theoretical model describing permeability of heterogeneous systems specifically accounting for self-segregated graphene morphology.
Read full abstract