Abstract

Graphene, flat carbon nanosheets, has generated huge activity in many areas of science and engineering due to its unprecedented physical and chemical properties. With the development of wide-scale applicability including facile synthesis and high yield, this exciting material is ready for its practical application in the preparation of polymer nanocomposites. Here we report that nanocomposites based on fully exfoliated graphene nanosheets and poly(vinyl alcohol) (PVA) are prepared via a facial aqueous solution. A significant enhancement of mechanical properties of the graphene/PVA composites is obtained at low graphene loading; that is, a 150% improvement of tensile strength and a nearly 10 times increase of Young’s modulus are achieved at a graphene loading of 1.8 vol %. The comparison between the experimental results and theoretical simulation for Young’s modulus indicates that the graphene nanosheets in polymer matrix are mostly dispersed randomly in the nanocomposite films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.