Serpentinites play a pivotal role in carrying fluids and different elements into the Earth’s mantle. However, their role in exchanging silica (Si) between the marine environment and the mantle remains a matter of investigation. The Wadi Igla serpentinite (southern Eastern Desert of Egypt) formed at the expense of abyssal harzburgite by ∼15–22 % melting. It contains abundant Cr-spinel with sub-microscopic serpentine and chlorite-rich pores providing a base to explore Si cycling during serpentinization-carbonatization processes. The low-grade metamorphism of the harzburgite protolith started on the ocean floor, forming lizardite and chlorite (250–300 °C). Increasing the temperature (400–450 °C) caused the formation of brucite and antigorite. With the subduction in the fore-arc and the interaction with subducting sediments-related CO2-rich fluid, the Wadi Igla serpentinite underwent metasomatism, producing chlorite (300 °C), antigorite, tremolite, dolomite, and ferritchromite rims around Cr-spinel (Type 1), with brucite loss. In the upper greenschist-lower amphibolite facies (ca. 500 °C), CO2-rich hydrothermal fluids (with XCO2 of ∼0.55) penetrated a large volume of the protolith leading to full serpentinization together with abundant magnesite replacement. The resultant silica-rich fluids percolated in the Type 1 Cr-spinel from the outward to cores through microfractures and pores, producing Type 2 and Type 3 Cr-spinel with serpentine ± chlorite along cleavages, diminished Al-cores and growing outer ferritchromite zone and/or Cr-magnetite to magnetite zones. The suprachondritic NbN/LaN (up to 39.35) and NbN/BaN (up to 13.37) of whole rock implies for HFSEs metasomatism by subduction sediments input components, while slight enrichment in LREEs (LaN/YbN = 2.5–3) and FMEs (Li, Pb, Sr, and Ba) may have resulted from serpentinization-related hydrothermal alteration. The Wadi Igla serpentinite indicates silica cycled in a closed system, suggesting that the altered Neoproterozoic oceanic lithosphere may not have shared their main components with the surrounding environment whether to the ocean floor or the subduction zone.