Postoperative recurrence risk for pediatric low-grade gliomas (pLGGs) is challenging to predict by conventional clinical, radiographic, and genomic factors. We investigated if deep learning of MRI tumor features could improve postoperative pLGG risk stratification. We used pre-trained deep learning (DL) tool designed for pLGG segmentation to extract pLGG imaging features from preoperative T2-weighted MRI from patients who underwent surgery (DL-MRI features). Patients were pooled from two institutions: Dana Farber/Boston Children's Hospital (DF/BCH) and the Children's Brain Tumor Network (CBTN). We trained three DL logistic hazard models to predict postoperative event-free survival (EFS) probabilities with 1) clinical features, 2) DL-MRI features, and 3) multimodal (clinical and DL-MRI features). We evaluated the models with a time-dependent Concordance Index (Ctd) and risk group stratification with Kaplan Meier plots and log-rank tests. We developed an automated pipeline integrating pLGG segmentation and EFS prediction with the best model. Of the 396 patients analyzed (median follow-up: 85 months, range: 1.5-329 months), 214 (54%) underwent gross total resection and 110 (28%) recurred. The multimodal model improved EFS prediction compared to the DL-MRI and clinical models (Ctd: 0.85 (95% CI: 0.81-0.93), 0.79 (95% CI: 0.70-0.88), and 0.72 (95% CI: 0.57-0.77), respectively). The multimodal model improved risk-group stratification (3-year EFS for predicted high-risk: 31% versus low-risk: 92%, p<0.0001). DL extracts imaging features that can inform postoperative recurrence prediction for pLGG. Multimodal DL improves postoperative risk stratification for pLGG and may guide postoperative decision-making. Larger, multicenter training data may be needed to improve model generalizability.