In a multi-source permanent magnet synchronous motor (PMSM) drive, three distinct winding structures can be implemented: multi-sector, multi-three-phase, and highly coupled. However, due to variations in the magnetic coupling between windings, their low-frequency DC-link current ripple components differ. This paper presents a method to identify the phenomena associated with each low-frequency harmonic content. Three analytical models are developed for the DC current ripple induced by unbalanced winding, counter-electromotive force (back-EMF) harmonics and aliasing effects, respectively, with the results validated through simulations. Experimental validation is conducted for highly coupled winding drives, demonstrating agreement with the analytical models and simulations. The maximum DC current ripple ratio found in the analytical model, the simulation and the experiments is less than 15%, which is deemed acceptable for motor drive applications.