In the pursuit of high-efficiency tandem devices for solar energy conversion based on III-V-semiconductors, low-defect III-V nucleation on Si(100) substrates is essential. Here, hydrogen and arsenic are key ingredients in all growth processes with respect to industrially scalable metalorganic vapor phase epitaxy. Our study provides insight into Si(100) surface preparation for the initial stage of III-V nucleation. The samples investigated, prepared on substrates with different offcut angles, show single domain surfaces consisting of rows of preferentially buckled dimers. Low energy electron diffraction and reflection anisotropy spectroscopy confirm well-defined (1 × 2)/(2 × 1) majority domains. Fourier-transform infrared spectroscopy revealed hydrogen bonding to the surface dimers, while no impurities were found by XPS. Density functional theory calculations support the experimental results and reveal a novel surface motif of H-passivated Si-As mixed dimers.
Read full abstract