Roadway runoff serves as a crucial pathway for transporting contaminants of emerging concern (CECs) from urban environments to receiving water bodies. Tire-related compounds originating from tire wear particles (TWPs) have been frequently detected, posing a potential ecological threat. Yet, the photolysis of tire-related compounds within roadway runoff remains inadequately acknowledged. Addressing this deficit, our study utilized high-resolution mass spectrometry (HRMS) to characterize the chemical profile of roadway runoff across eight strategically selected sites in Guangzhou, China. 219 chemicals were identified or detected within different confidence levels. Among them, 29 tire-related contaminants were validated with reference standards, including hexa(methoxymethyl)melamine (HMMM), 1,3-diphenylguanidine (DPG), dicyclohexylurea (DCU), and N-cyclohexyl-2-benzothiazol-amine (DCMA). HMMM exhibited with the abundance ranging from 2.30 × 104–3.10 × 106, followed by DPG, 1.69 × 104–8.34 × 106. Runoff sample were exposed to irradiation of 500 W mercury lamp for photodegradation experiment. Photolysis results indicated that tire-related compounds with a low photolysis rate, notably DCU, DCMA, and DPG, are more likely to persist within the runoff. The photolytic rates were significantly correlated with the spatial distribution patterns of these contaminants. Our findings underscore TWPs as a significant source of pollution in water bodies, emphasizing the need for enhanced environmental monitoring and assessment strategies.
Read full abstract