Revised descriptors for twenty-five polycyclic aromatic and related hydrocarbons (PAHs) forming a component of the Wayne State University (WSU) descriptor database are provided for use with the solvation parameter model. The descriptors are determined by the Solver method using experimental data for calibrated gas-liquid and reversed-phase liquid chromatographic retention factors and liquid-liquid partition constants in totally organic biphasic systems. The characteristic solvation properties of the PAHs are accounted for mainly by the additional dispersion interactions (E descriptor) and dipole-type interactions (S descriptor) resulting from the availability of easily polarizable electrons that complement typical dispersion interactions for saturated hydrocarbons. The descriptors afford acceptable prediction of the water-air partition constant (average absolute deviation AAD = 0.17, n = 22), octanol-air partition constant (AAD = 0.12, n = 20), and water-octanol partition constant (AAD = 0.10, n = 23). A two-parameter model containing only the V and B descriptors provides an unbiased prediction of aqueous solubility for the PAHs with an AAD = 0.26 (n = 22). The descriptors estimated by convenient chromatographic and partition constant measurements are demonstrated to be a viable alternative to the experimental determination of environmental properties otherwise only available by tedious, expensive, and low data throughput experimental techniques.
Read full abstract