Abstract
Conventional cell migration assays require time-lapse imaging of live cells to trace cell migration paths, consequently demanding cumbersome hardware setup and suffering from low data throughput. In this work, we developed an assay named Tracking Cells by Footprint (TCF) based on a mechano-optical biosensor that irreversibly becomes fluorescent when sensing local cell adhesive force. Cell migration paths are visualized and recorded as fluorescent footprints on glass or elastic substrates coated with such biosensor. From the footprints, cell migration ranges, speeds and persistence are analyzed and quantified without the need of time-lapse imaging. The feasibility of TCF assays was demonstrated with three types of cells with different migratory capabilities. TCF was then applied to evaluating cell motility affected by biochemical or biomechanical cues. The results show that fibroblast motility is reduced by blebbistatin and vinblastine but promoted by bFGF (basic fibroblast growth factor), and the motility correlates with the substrate rigidity. TCF is also compatible with 96-well plates which, combined with static imaging and large-area scanning, provides high data throughput with minimal additional effort.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.