Silica aerogels are comprised of highly porous three-dimensional networks. They typically are very fragile and brittle due to the inter-particle connections in the pearl-necklace-like fractal network. This behavior prevents their wider utility. The present study aims to reinforce the silica-based gel to improve the poor mechanical strength through crosslinking the silica particles with polyimide and incorporating Lucentite STN clay into the skeletal silica–polyimide network. 3-Aminopropyltriethoxysilane (APTES) end-capped polyamic acid oligomers were first formed followed by gelation with TMOS at a range of clay concentrations to generate a silica network. The incorporation of clay leads to slightly lower BET surface area with little effect on shrinkage, porosity and density. Microscopy revealed that the aerogel preferentially grows from the edges of well dispersed clay particles while minimal growth occurs from clay surfaces. The formation of covalent bonds and hydrogen bonding through the OH functionalized clay edges is thought to enhance the connectivity with silica network and clay, leading to a substantial reinforcement effect as evidenced by an increase in modulus.
Read full abstract