Flat space cosmologies (FSCs) are time dependent solutions of three-dimensional (3D) gravity with a vanishing cosmological constant. They can be constructed from a discrete quotient of empty 3D flat spacetime and are also called shifted-boost orbifolds. Using this quotient structure, we build a new and generalized Selberg zeta function for FSCs, and show that it is directly related to the scalar 1-loop partition function. We then propose an extension of this formalism applicable to more general quotient manifolds M\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\mathcal{M} $$\\end{document}/ℤ, based on representation theory of fields propagating on this background. Our prescription constitutes a novel and expedient method for calculating regularized 1-loop determinants, without resorting to the heat kernel. We compute quasinormal modes in the FSC using the zeroes of a Selberg zeta function, and match them to known results.