Abstract
We relate the heat kernel and quasinormal mode methods of computing the 1-loop partition function of arbitrary spin fields on a rotating (Euclidean) BTZ background using the Selberg zeta function associated with ℍ3/ℤ, extending (arXiv:1811.08433) [1]. Previously, Perry and Williams [2] showed for a scalar field that the zeros of the Selberg zeta function coincide with the poles of the associated scattering operator upon a relabeling of integers. We extend the integer relabeling to the case of general spin, and discuss its relationship to the removal of non-square-integrable Euclidean zero modes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.