This article proposes implementing and comparing the effectiveness of three optimization algorithms (ACO, PSO, and FPA) for tuning a proportional-integral-derivative (PID) controller on an Arduino Mega 2560 board. This relatively unexplored approach aims to evaluate these algorithms through practical experiments. The choice of PID control is due to its design simplicity and widespread industrial use. Similarly, the permanent magnet DC motor (PMDC) was selected because of its crucial role in various industrial sectors. Tuning PID parameters using optimization algorithms has garnered increasing interest due to its demonstrated efficiency. Several studies have validated the stability of ACO, PSO, and FPA algorithms, justifying their selection. In this article, simulation results showed that ACO, with a response time of 0.322s and an overshoot of 0.68%, was more effective than PSO, which had a response time of 0.768s and an overshoot of 13%. FPA had a response time of 0.347s, close to ACO, but a higher overshoot of 6%. In practice, several factors come into play, such as speed ripples caused by the speed sensor, and machine saturation, which must be considered to ensure practical implementation. After adjusting the PID parameters and integrating a low-pass filter in the feedback loop, ACO, with a response time of 0.596s and an overshoot of 1.68%, was very close to FPA, which had a response time of 0.644s and an overshoot of 0.81%. This comparison highlighted the advantages of the FPA algorithm, which is simple to use, requires fewer parameters to adjust, and takes less time than ACO. This study suggests the potential for implementing a hybrid FPA-ACO algorithm, leveraging the strengths of both algorithms.
Read full abstract