Caligula japonica, commonly known as Japanese giant silkworm (JGS), is a serious defoliating pest of fruit and forest trees in East Asia. To develop eco-friendly and cost-effective control methods for this pest, we evaluated the potential for biological control of JGS using its egg parasitoid Anastatus gansuensis reared on the Chinese oak silkworm (COS) Antheraea pernyi. We compared the reproductive traits and population increase potential of the parasitoid on JGS and COS eggs, as well as its functional response to host egg densities and mutual interference at different parasitoid densities. Anastatus gansuensis was confirmed to be strictly synovigenic, with most eggs maturing post-emergence, and produced <1% male offspring on both host eggs. Although A. gansuensis females reared from COS eggs had longer longevity and oviposition period, and higher fecundity and net reproductive rate compared to those reared from JGS eggs, the parasitoid had a higher intrinsic rate of increase on JGS than COS eggs. The parasitoid exhibited a type II functional response to increasing host densities, with mutual interference among foraging female wasps occurred at higher parasitoid densities. Our results indicate a high potential for biological control of JGS using A. gansuensis. The parasitoid can be efficiently reared on COS eggs and used against JGS. It may be essential to provide food for emerging adult parasitoids allowing time for egg maturation prior to the rearing or augmentative release of the parasitoid. Some mutual interference at high parasitoid rearing densities likely reduces per capita parasitization efficiency of A. gansuensis. © 2024 Society of Chemical Industry.