Abstract

The genera Anastatus and Mesocomys (both Hymenoptera: Eupelmidae) are important solitary egg endoparasitoids as biological control agents for lepidopterous and hemipterous pests worldwide. Here, we comparatively evaluated the demographic parameters of four important eupelmid egg parasitoids (Anastatus fulloi, A. japonicus, Mesocomys albitarsis and M. trabalae) reared on the factitious host eggs of the Chinese oak silkworm Antheraea pernyi, using age-stage two-sex life tables, their population projections as well as egg maturation patterns. Both the age-specific net reproductive rate (lx mx ) and reproductive value (vxj ) increased initially and then gradually decreased with increasing age in all four parasitoid species. Overall, the two Mesocomys species had higher survival rates at stable age-stage distribution, peak reproductive values, and intrinsic rates of increase than the two Anastatus species. Mesocomys albitarsis had the longest longevity while A. japonicus had the longest oviposition days and mean generation time. The two Mesocomys species are thus projected to have faster population increase than the two Anastatus species. Adult females of all four parasitoid species emerged with only a few mature eggs (< 6 eggs) and most of their eggs were matured post-emergence (i.e., strict synovigeny). The estimated 90% of lifetime complement of reproduction (offspring) and realized days were 374 and 32 for A. japonicus, 337 and 22 for M. trabalae, 330 and 19 for M. albitarsis and 147 and 28 for A. fulloi. Our results indicated that the two Mesocomys species have higher control capacity than the two Anastatus species. Provision of adult food for these strictly synovigenic parasitoids would be essential to prolong their lifespan and continuously produce eggs for parasitizing their hosts for mass rearing or augmentative biological control programs. This article is protected by copyright. All rights reserved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.