Aluminum (Al) is one of the most abundant element in the world. But aluminum exposure and accumulation causes serious diseases, related with free radicals. Reduced glutathione (GSH) is a tripeptide with intracellular antioxidant effects. This study aimed to investigate the role of GSH on adenosine deaminase (ADA), antioxidant system, and aluminum and zinc (Zn) levels in acute aluminum toxicity. In this study, Sprague-Dawley rats (n = 32) were used. The rats were divided into four equal groups (n = 8). Group I received 0.5mL intraperitoneal injection of 0.9% saline solution (NaCI), Group II received single-dose AlCI3, Group III was given GSH for seven days, and Group IV was given AlCI3 single dose, and at the same time, 100mg/kg GSH was given for seven days. At the end of the trial, blood samples were collected by cardiac puncture. Serum total antioxidant status (TAS) and Zn levels were lower in the aluminum-administered group than the control group. In contrast, plasma total oxidant status (TOS) and aluminum concentrations and ADA activity were found higher in the aluminum-administered group than in the control group. Unlike the other groups, group GSH administrated with aluminum was similar to the control group. As a result, GSH administration has a regulatory effect on ADA activity, antioxidant system, and Zn levels in experimental aluminum toxicity. In addition, GSH may reduce the oxidant capacity increased by Al administration and may have a tolerant role on the accumulated serum Al levels. But long-term experimental Al toxicity studies are needed to reach a firm conclusion.
Read full abstract