To measure the long-range transport of PCDD/Fs, a background sampling site at Mt. Lulin station (Taiwan) was selected based on meteorological information and its location relative to burning events in Southeast Asia. During regular sampling periods, a higher concentration of PCDD/Fs was recorded in 2008 at Mt. Lulin station during La Niña events, with levels reaching 390 fg I-TEQ/m3. In contrast, a higher concentration of 483 fg I-TEQ/m3 was observed in 2013 during biomass burning events. This indicates that La Niña affects the ambient PCDD/F concentrations. The ratio of ΣPCDD/ΣPCDF was 0.59, suggesting significant long-range transport contributions from 2007 to 2023. From 2007 to 2015, the predominant species was 2,3,4,7,8-PCDF, accounting for 25.3 to 39.6% of the total PCDD/Fs. From 2018 onward, 1,2,3,7,8-PCDD became more dominant, accounting for 15.0 to 27.1%. According to the results from the receptor model PMF (n = 150), the sources of PCDD/Fs were identified as dust storms and monsoon events (19.3%), anthropogenic activity (28.5%), and biomass burning events (52.2%). The PSCF values higher than 0.7 highlighted potential PCDD/F emission source regions for Mt. Lulin during biomass burning events, indicating high PSCF values in southern Thailand, Cambodia, and southern Vietnam.