Glucagon-like peptide-1 (GLP-1) is an intestinally derived incretin that plays a vital role in engineering the biological circuit involved in treating type 2 diabetes. Exceedingly short half-life (1–2 min) of GLP-1 limits its therapeutic applicability, and the implication of its new variants is under question. Since albumin-binding DARPin as a mimetic molecule has been reported to increase the serum half-life of therapeutic compounds, the interaction of new variants of GLP-1 in fusion with DARPin needs to be examined against the GLP-1 receptor. This study was aimed to design stable and functional fusion proteins consisting of new protease-resistant GLP-1 mutants (mGLP1) genetically fused to DARPin as a critical step toward developing long-acting GLP-1 receptor agonists. The stability and solubility of the engineered fusion proteins were analyzed, and their secondary and tertiary structures were predicted and satisfactorily validated. Molecular dynamics simulation studies revealed that the predicted structures of engineered fusion proteins remained stable throughout the simulation. The relative binding affinity of the engineered fusion proteins' complex with human serum albumin and the GLP-1 receptor individually was assessed using molecular docking analyses. It revealed a higher affinity compared to the interaction of the individual GLP-1 and HSA-binding DARPin with the GLP-1 receptor and human serum albumin, respectively. The present study suggests that engineered fusion proteins can be used as a potential molecule in the treatment of type 2 diabetes, and this study provides insight into further experimental use of mimetic complexes as alternative molecules to be evaluated as new bio-breaks in the engineering of biological circuits in the treatment of type 2 diabetes.
Read full abstract