Abstract

Our aims were to investigate the pathogenesis of diabetic cardiomyopathy (DCM) and to explore the protective effect of glucagon-like peptide-1 receptor agonist (GLP-1RA) on DCM. After 12 weeks of treatment with exenatide-loaded microspheres, a long-acting GLP-1RA, in DCM mice, cardiac structure and function were evaluated by plasma B-type natriuretic peptide (BNP), echocardiography, H&E, oil red and Sirius staining. The expression of glucagon-like peptide-1 receptor in mouse heart tissue was determined by immunofluorescence staining. The label-free proteomic analysis of cardiac proteins was conducted among control, DCM and DM+GLP-1RA groups. Then, quantitative real-time PCR, Western blotting and dual-luciferase reporter assay were performed to verify the regulation of target protein by the upstream microRNA (miRNA). GLP-1RA treatment obviously improved serum BNP, myocardial fibrosis, lipid deposition of the myocardium and echocardiography parameters in DCM mice. Sarcolemmal membrane-associated protein (SLMAP) was one of 61 differentially expressed cardiac proteins found in three groups by proteomic analysis. Up-regulation of microRNA-29b-3p (miR-29b-3p) and down-regulation of SLMAP were found in the ventricular myocardium of GLP-1RA-treated DCM mice. SLMAP was a target of miR-29b-3p, while GLP-1RA regulated SLMAP expression through miR-29b-3p. Furthermore, inhibition of glucagon-like peptide-1 receptor (GLP-1R) in cardiomyocytes reversed the effects of GLP-1RA on miR-29b/SLMAP. SLMAP may play roles in the pathogenesis of DCM and may be a target of GLP-1RA in protecting against DCM. After binding to myocardial GLP-1R, GLP-1RA can regulate the expression of myocardial SLMAP through miR-29b-3p.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call