Decision-making in healthcare often relies on narrative guidelines; however, these instruments are poorly accessible for supporting clinical decision-making. This study explores the application of rule-based decision logic in algorithmic modeling, emphasizing its great potential in clinical decision support and research. Integrating rule-based algorithms with existing information systems and real-world data poses a serious challenge. Integrating decision algorithms with information standards increases their effectiveness across various applications. This study outlines a method for constructing clinical decision trees (CDTs), highlighting their transparency and interpretability, using information standards as a design principle. We use the digitization of the Dutch breast cancer guideline through CDTs as a case study to exemplify their versatility and practical significance. The process step 'primary treatment' has been successfully translated from the narrative guidelines format to the anticipated ted computational format.
Read full abstract