Identifying genetic variants responsible for phenotypic variation under selective pressure has the potential to enable productive gains in natural resource conservation and management. Despite this potential, identifying adaptive candidate loci is not trivial, and linking genotype to phenotype is a major challenge in contemporary genetics. Many of the population genetic approaches commonly used to identify adaptive candidates will simultaneously detect false positives, particularly in nonmodel species, where experimental evidence is seldom provided for putative roles of the adaptive candidates identified by outlier approaches. In this study, we use outcomes from population genetics, phenotype association, and gene expression analyses as multiple lines of evidence to validate candidate genes. Using lodgepole and jack pine as our nonmodel study species, we analyzed 17 adaptive candidate loci together with 78 putatively neutral loci at 58 locations across Canada (N > 800) to determine whether relationships could be established between these candidate loci and phenotype related to mountain pine beetle susceptibility. We identified two candidate loci that were significant across all population genetic tests, and demonstrated significant changes in transcript abundance in trees subjected to wounding or inoculation with the mountain pine beetle fungal associate Grosmannia clavigera. Both candidates are involved in central physiological processes that are likely to be invoked in a trees response to stress. One of these two candidate loci showed a significant association with mountain pine beetle attack status in lodgepole pine. The spatial distribution of the attack‐associated allele further coincides with other indicators of susceptibility in lodgepole pine. These analyses, in which population genetics was combined with laboratory and field experimental validation approaches, represent first steps toward linking genetic variation to the phenotype of mountain pine beetle susceptibility in lodgepole and jack pine, and provide a roadmap for more comprehensive analyses.
Read full abstract