Experimentally observed narrowing of spectral holes in a glass under hydrostatic pressure confirms our theoretical finding that the external pressure, in addition to increasing the frequencies of soft localized modes, also reduces their number. This occurs because the majority of soft localized modes in glasses is shown to have a negative cubic anharmonicity. For that reason the applied pressure not only enhances the stiffness of these modes, but also transforms a fraction of them into tunneling two-level systems, whereas the simultaneous reverse transformations of some other two-level systems into soft localized modes are less numerous.