Low back pain (LBP) is a leading cause of disability worldwide. Although not all patients with Modic changes (MCs) experience LBP, MC is often closely associated with LBP and disc degeneration. In clinical practice, the focus is usually on symptoms related to MC, which are hypothesized to be associated with LBP; however, the link between MC and nerve compression remains unclear. In cases of intervertebral disc herniation, nerve compression is often the definitive cause of symptoms. Recent advances have shed light on the pathophysiology of MC, partially elucidating its underlying mechanisms. The pathogenesis of MC involves complex bone marrow‑disc interactions, resulting in bone marrow inflammation and edema. Over time, hematopoietic cells are gradually replaced by adipocytes, ultimately resulting in localized bone marrow sclerosis. This process creates a barrier between the intervertebral disc and the bone marrow, thereby enhancing the stability of the vertebral body. The latest understanding of the pathophysiology of MC suggests that chronic inflammation plays a significant role in its development and hypothesizes that the complement system may contribute to its pathological progression. However, this hypothesis requires further research to be confirmed. The present review we proposed a pathological model based on current research, encompassing the transition from Modic type 1 changes (MC1) to Modic type 2 changes (MC2). It discussed key cellular functions and their alterations in the pathogenesis of MC and outlined potential future research directions to further elucidate its mechanisms. Additionally, it reviewed the current clinical staging and pathogenesis of MC, recommended the development of an updated staging system and explored the prospects of integrating emerging artificial intelligence technologies.
Read full abstract