The present study focuses on the intrinsic properties of the SmFe10Co2-xVx (x = 0–2) alloys, which includes the SmFe10Co2 alloy, one of the most promising permanent magnets with the ThMn12 type of structure due to its large saturation magnetization (µ0Ms = 1.78 T), high Curie temperature (Tc = 859 K), and anisotropy field (µ0Ha = 12 T) experimentally obtained. Unfortunately, its low coercivity (<0.4 T) hinders its use in permanent magnet applications. The effect of V-doping on magnetization, magnetocrystalline anisotropy energy, and Curie temperature is investigated by electronic band structure calculations. The spin-polarized fully relativistic Korringa-Kohn-Rostoker (SPR-KKR) band structure method, which employs the coherent potential approximation (CPA) to deal with substitutional disorder, has been used. The Hubbard-U correction to local spin density approximation (LSDA + U) was used to account for the large correlation effects due to the 4f electronic states of Sm. The computed magnetic moments and magnetocrystalline anisotropy energies were compared with existing experimental data to validate the theoretical approach’s reliability. The exchange-coupling parameters from the Heisenberg model were used for obtaining the mean-field estimated Curie temperature. The magnetic anisotropy energy was separated into contributions from transition metals and Sm, and its relationships with the local environment, interatomic distances, and valence electron delocalization were analyzed. The suitability of the hypothetical SmFe10CoV alloy for permanent magnet manufacture was assessed using the calculated anisotropy field, magnetic hardness, and intrinsic magnetic properties.
Read full abstract