There have been numerous studies concerning the possibility of self-similar scaling laws in fully developed turbulent shear flows, driven over the past half-century or so by the early seminal work of Townsend (1956, The Structure of Turbulent Shear Flow. Cambridge University Press). His and nearly all subsequent analyses depend crucially on a hypothesis about the nature of the dissipation, ${\it\epsilon}$, of turbulence kinetic energy, $k$. It has usually been assumed (sometimes implicitly) that this is governed by the famous Kolmogorov relation ${\it\epsilon}=C_{{\it\epsilon}}k^{3/2}/L$, where $L$ is a length scale of the energy-containing eddies and $C_{{\it\epsilon}}$ is a constant. The paper by Dairay et al. (J. Fluid Mech. vol. 781, 2015, pp. 166–195) demonstrates, however, that, in the specific context of an axisymmetric wake, there can be regions where ${\it\epsilon}$ has a different behaviour, characterised by a $C_{{\it\epsilon}}$ that is not constant but depends on a varying local Reynolds number (despite the existence of a $-5/3$ region in the spectra). This leads to fundamentally different scaling laws for the wake.