Abstract

A model based on the works of Buongiorno, which includes the effects of Brownian motion and thermophoresis, is used to develop the governing equations for convection in nanofluids. The analysis includes examples with water and ethylene glycol as the base fluids and nanoparticles of Cu and Al2O3. An assumption of zero nanoparticle flux is used at the surface of the plate to make the model more physically realistic. The model accounts for the effects of both Brownian motion and thermophoresis in the mass boundary condition. Using suitable transformations, the governing partial differential equations are converted into ordinary differential equations which are solved numerically. The dimensionless velocity, temperature, and concentration gradients are used in the second law analysis to determine heat and mass transfer rates. It is shown that the dimensionless entropy generation rate strongly depends upon the solid volume fraction of the nanoparticles, local Reynolds number, and group parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call