Quantum states containing records of incompatible outcomes of quantum measurements are valid states in the tensor-product Hilbert space. Since they contain false records, they conflict with the Born rule and with our observations. I show that excluding them requires a fine-tuning to an extremely restricted subspace of the Hilbert space that seems "conspiratorial", in the sense that (1) it seems to depend on future events that involve records (including measurement settings) and on the dynamical law (normally thought to be independent of the initial conditions), and (2) it violates Statistical Independence, even when it is valid in the context of Bell's theorem. To solve the puzzle, I build a model in which, by changing the dynamical law, the same initial conditions can lead to different histories in which the validity of records is relative to the new dynamical law. This relative validity of the records may restore causality, but the initial conditions still must depend, at least partially, on the dynamical law. While violations of Statistical Independence are often seen as non-scientific, they turn out to be needed to ensure the validity of records and our own memories and, by this, of science itself. A Past Hypothesis is needed to ensure the existence of records and turns out to require violations of Statistical Independence. It is not excluded that its explanation, still unknown, ensures such violations in the way needed by local interpretations of quantum mechanics. I suggest that an as-yet unknown law or superselection rule may restrict the full tensor-product Hilbert space to the very special subspace required by the validity of records and the Past Hypothesis.
Read full abstract