The occurrence of landslide disasters causes huge economic losses and casualties. Although many achievements have been made in predicting the probability of landslide disasters, various factors such as the scale and spatial location of landslide geological disasters should still be fully considered. Further research on how to quantitatively characterize the susceptibility of landslide geological disasters is necessarily important. To this end, taking the Wenchuan earthquake as the research area and extracting eight influencing factors, including terrain information entropy (Ht), lithology, distance from rivers, distance from faults, vegetation coverage (NDVI), distance from roads, peak ground motion acceleration (PGA), and annual rainfall, a landslide susceptibility prediction model was hereby established based on LSTM-RF-MDBN, a landslide susceptibility prediction map was drawn, and the spatial distribution characteristics of landslide disasters were analyzed. The results showed that (1) LSTM had good prediction results for the eight influencing factors, with an average prediction accuracy of 85%; (2) compared with models such as DNN and LR for predicting landslide disaster points, the AUC value of RF for predicting landslide point positions reached 0.88, presenting a higher accuracy compared to other models; (3) the AUC value of the landslide susceptibility prediction model based on LSTM-RF-MDBN reached 0.965, which had a high accuracy in predicting landslide susceptibility. Overall, the research results can provide a scientific basis for selecting the best strategy for landslide disaster warning, prevention, and mitigation.
Read full abstract