Lobachevsky geometry simulates a medium with special constitutive relations Di = ϵ0ϵikEk, Bi = μ0μikHk, where two matrices coincide: ϵik(x) = μik(x). The situation is specified in quasi-Cartesian coordinates (x, y, z) in Lobachevsky space, they are appropriate for modeling a medium nonuniform along the axis z. Exact solutions of the Maxwell equations in complex form of Majorana-Oppenheimer have been constructed. The problem reduces to a second-order differential equation for a certain primary function which can be associated with the one-dimensional Schrödinger problem for a particle in external potential field U(z) = U0e2z. In the frames of the quantum mechanics, Lobachevsky geometry acts as an effective potential barrier with reflection coefficient R = 1; in electrodynamic context, this geometry simulates a medium that effectively acts as an ideal mirror distributed in space. Penetration of the electromagnetic field into the effective medium along the axis z depends on the parameters of an electromagnetic waves ω, k2 1 + k2 2 and the curvature radius ρ of the used Lobachevsky model. The generalized quasi-plane wave solutions f(t, x, y, z) = E + iB and the relevant system of equations are transformed into the real form, which permit us to relate geometry characteristics with expressions for effective tensors of electric and magnetic permittivities.