Abstract

In Friedmann–Lobachevsky space-time with a radius of curvature slowly varying over time, we study numerically the problem of motion of a particle moving in the Cornell potential. The mass of the particle is taken to be a reduced mass of the charmonium system. In contrast to the similar problem in flat space, in Lobachevsky space the Cornell potential has a finite depth and, as a consequence, the number of bound states of the system is finite and motion with a continuum energy spectrum is also possible. In this paper, we study the bound states as well as the scattering states of the system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call