Abstract

In this work, high-energy positive charged particles are distinguished using the Lobachevsky space or Hyperbolic space, which is defined as the total rapidity multiplied by hyperbolic cosines of the transverse and longitudinal rapidity of the particles. Experimental data from eight different types of interactions detected in the bubble chambers accumulated in the high-energy sector were used in the calculations. The weights used to construct the proton and positive pion distributions for each of the interacting secondary particles have been eliminated, allowing such studies to be performed such as particle counting and clustering.These weights do not include calculated weights at azimuth angles, near the center of the star, or without momentum measurements. We now have the opportunity to study positive pions and protons. The percentage of confused particles increases with the beam energy.
 After the reconstruction, we conducted a study of the temperature of the charged particles produced by the p + p interaction of 205 GeV, where Tsallis temperatures are close to Hagedorn . On the other hand, Hagedor and temperatures are higher than Tsallis, which means that the unstable states exchange heat as they move to equilibrium.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.