Hydrogen production through steam reforming of ethanol (SRE) over Mg modified Co-based catalysts supported on mesoporous SBA-15 was studied herein to evaluate the catalytic activity and the behavior of coke deposition. The CoyMgx/SBA-15 catalysts are obtained according to the steps of consecutive impregnation of Mg (x = 5 and 10 wt%) to be incorporated on SBA-15 and then follow the loading of Co (y = 10 and 20 wt%) using the incipient wetness impregnation method. The catalysts are characterized by using X-ray diffraction (XRD), temperature programmed reduction (TPR), transmission electron microscopy (TEM) and BET techniques. Also, the spent catalysts are further characterized by using XRD and TEM. The catalytic activity of the SRE is evaluated in a fixed-bed reactor under 22,000 h-1 GHSV and with an H2O/EtOH molar ratio of 13. All the CoyMgx/SBA-15 catalysts present a mesoporous structure, even after the SRE reaction. The optimum catalyst of Co20Mg5/SBA-15-H650 comes from the high loading of Co and high reduction temperature pretreatment, which show a high catalytic activity and stability at 550°C with a hydrogen yield (YH2) up to 5.78 and CO selectivity around 3.10%.