Interest in studying power flow dynamics has grown in recent years, with new power flow diagnostics being developed at Sandia National Laboratories for the $Z$ Pulsed Power Facility. Presently, the only power flow loads that have been studied are cylindrical static or imploding loads that are driven by synchronous short pulse (100 ns rise time). Presented is a design that utilizes the dynamic materials properties program's stripline geometry in a high voltage pulsed shaped (asymmetric asynchronous) driving mode. This design has exhibited repeatable current loss with a large time-varying inductance that is well matched to the machine at pulse initialization but which triples to high inductance in 800 ns. Evidence is presented that plasma not captured in the magnetohydrodynamic approximation and ill represented by any of our existing predictive pulsed power codes is adversely affecting load current delivery. The authors believe this design could be of great interest to the experimental and modeling communities for studying power flow dynamics.
Read full abstract