A performance data set from 376 Ripollesa purebred ewes of the experimental flock of the Universitat Autònoma of Barcelona was analyzed using a bivariate Bayesian threshold-linear model. The data set contained 1,598 litter size records and 1,699 days-to-lambing records. The model included the additive genetic effect of each animal and 3 nongenetic sources of variation: ewe age, year of lambing, and the permanent environmental effect characterized by the ewe. The flock was phenotypically selected for litter size since 1986, and replacement ewes and rams were selected from the progeny of the more prolific ewes, which had at least 3 deliveries recorded. The phenotypic trend for litter size was positive, whereas days to lambing followed an unclear pattern. Both traits had low heritabilities; 0.13 for litter size and 0.11 for days to lambing. Response to selection was evaluated through (a) the average breeding value of the ewe lambs chosen annually, and (b) the average breeding value of the overall flock. The first measurement suggested a positive trend for litter size, although it showed important oscillations. On the other hand, the average breeding value for the overall flock showed a stable positive tendency after yr 4 of selection, with estimates clearly different from zero after yr 11 of selection. A significant increase in the incidence of multiple births was observed, with a mode of approximately 10%. The correlated response in days to lambing did not show a significant trend. The effect of year of lambing also positively influenced both litter size and days to lambing, although important oscillations were observed between years. Results indicated that litter size in sheep can be effectively improved through phenotypic selection, even in small flocks; moreover, days to lambing could also be genetically improved, given the estimate obtained for its heritability.
Read full abstract