As the communication distance changes, the received signal strength of an underwater optical communication system will change, and the range of its variation may not only exceed the dynamic range of the photoelectric detection device but also cause the reliability of communication to change due to the change in the received signal-to-noise ratio. In order to maintain better communication over a longer distance, this paper proposes a rate-adaptive method for underwater optical communication with joint control in the photoelectric domain. In the optical domain, the incident light’s power is adaptively adjusted by controlling the transmittance of the liquid crystal light valve to reduce saturation distortion. In the electrical domain, the constellation distribution is optimized according to the desired probability mass function, and the modulation order is adjusted in real time by estimating the received signal-to-noise ratio of the link. The simulation results show that under the forward error correction (FEC) threshold, the proposed method increases the dynamic range of the photomultiplier tube (PMT) by about 10 dB and expands the dynamic range of the system’s communication distance.
Read full abstract