Abstract

The propagation of nonlinear waves, such as fires, weather fronts, and disease spread, has drawn attention since the dawn of time. A well-known example of nonlinear wave–fronts–in our daily lives is the domino waves, which propagate equally toward the left or right flank due to their reciprocal coupling. However, there are other situations where front propagation is not fully understood, such as bistable fronts with nonreciprocal coupling. These couplings are characterised by the fact that the energy emitter and receiver are not interchangeable. Here, we study the propagation of nonlinear waves in a bistable optical chain forced by nonreciprocal optical feedback. The spatiotemporal evolution and the front speeds are characterised as a function of the nonreciprocal coupling. We derive an equation to describe the interacting optical elements in a liquid crystal light valve with nonreciprocal optical feedback and compare the experimental results with numerical simulations of the coupled bistable systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.