Linarin, a flavone glycoside, is considered to be a promising natural product due to its diverse pharmacological activities. Recently, it has been brought into focus for its potential to treat liver failure. In this study, a rapid and sensitive liquid chromatography electrospray-ionization tandem mass spectrometry (LC–MS/MS) method was developed and validated for the simultaneous determination of linarin and its three metabolites (acacetin, apigenin, and p-hydroxy benzaldehyde) in plasma and liver tissue samples of normal rats and rats with d-galactosamine (d-GalN)-induced liver injury. After liquid–liquid extraction (LLE) with ethyl acetate, chromatographic separation of the four analytes was achieved using an ACQUITY UPLC BEH-C18 (1.7 μm, 2.1 × 50 mm) with a mobile phase of 0.01% formic acid in methanol and 0.01% formic acid at a flow rate of 0.3 mL/min. The detection was accomplished on a tandem mass spectrometer via an electrospray ionization (ESI) source by multiple reaction monitoring (MRM) in the negative ionization mode. The method had a good linearity over the concentration range of 1.00–200 ng/mL for linarin and its metabolites. The validated method was successfully applied to the pharmacokinetic and liver tissue distribution study of linarin and its metabolites after a single oral administration of linarin (90 mg/kg) to rats.
Read full abstract