This study focuses on the Cauchy problem associated with the two-component peakon system featuring a cubic nonlinearity, constrained to the class (m,n)∈Ck(R)∩Wk,1(R)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$(m,n)\\in C^{k}(\\mathbb {R}) \\cap W^{k,1}(\\mathbb {R})$$\\end{document} with k∈N∪{0}\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$k\\in \\mathbb {N}\\cup \\{0\\}$$\\end{document}. This system extends the celebrated Fokas–Olver–Rosenau–Qiao equation and the following nonlocal (two-place) counterpart proposed by Lou and Qiao: ∂tm(t,x)=∂x[m(t,x)(u(t,x)-∂xu(t,x))(u(-t,-x)+∂x(u(-t,-x)))],\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\begin{aligned} \\partial _t m(t,x)= \\partial _x[m(t,x)(u(t,x)-\\partial _xu(t,x)) (u(-t,-x)+\\partial _x(u(-t,-x)))], \\end{aligned}$$\\end{document}where m(t,x)=1-∂x2u(t,x)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$m(t,x)=\\left( 1-\\partial _{x}^2\\right) u(t,x)$$\\end{document}. Employing an approach based on Lagrangian coordinates, we establish the local existence, uniqueness, and Lipschitz continuity of the data-to-solution map in the class Ck∩Wk,1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$C^k\\cap W^{k,1}$$\\end{document}. Moreover, we derive criteria for blow-up of the local solution in this class.