Abstract
We investigate the connection between maximal directional derivatives and differentiability for Lipschitz functions defined on Laakso space. We show that maximality of a directional derivative for a Lipschitz function implies differentiability only for a [Formula: see text]-porous set of points. On the other hand, the distance to a fixed point is differentiable everywhere except for a [Formula: see text]-porous set of points. This behavior is completely different to the previously studied settings of Euclidean spaces, Carnot groups and Banach spaces. Hence, the techniques used in these spaces do not generalize to metric measure spaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.