Our previously reported naphthofuran derivative BF4, identified as a potent silent information regulator 1 (SIRT1) activator, could alleviate high glucose stimulating apoptosis and inflammation response in human renal tubular epithelial (HK-2) cells. In this study, the underlying effects of BF4 on lipid metabolism in 3T3-L1 adipocytes were investigated. The effects of BF4 on pre-adipocyte differentiation and adipocyte lipolysis were studied using oil red O staining and quantitative glycerol and triglyceride content assay kits. Moreover, the molecular mechanism of BF4 on adipogenesis and lipid metabolism in 3T3-L1 adipocytes was investigated by real-time quantitative PCR and Western blotting analysis. We found that compound BF4 significantly decreased adipogenesis and lipid accumulation and inhibited the differentiation of 3T3-L1 pre-adipocytes into adipocytes. Moreover, compound BF4 decreased the expressions of several key regulators in adipocyte differentiation, including C/EBPβ and PPARγ, and their downstream lipogenesis targets via the activation of the SIRT1/AMPK pathway. Our results demonstrated that the novel SIRT1 activator BF4 might be a potent candidate for regulating lipid metabolism.
Read full abstract