Abstract
This study investigates intramuscular (IM) adipocyte development in the Longissimus muscle (LM) between Wagyu- and Angus-sired steers compared at a similar age and days on feed (D) endpoint or similar body weight (B) endpoint by measuring IM adipocyte cell area and lipid metabolism mRNA expression. Angus-sired steers (AN, n = 6) were compared with steers from two different Wagyu sires (WA), selected for either growth (G) or marbling (M), to be compared at a similar days on feed (DOF; 258 ± 26.7 d; WA-GD, n = 5 and WA-MD, n = 5) in Exp. 1 or body weight (BW; 613 ± 18.0 kg; WA-GB, n = 4 and WA-MB, n = 5) in Exp. 2, respectively. In Exp. 1, WA-MD steers had a greater (P ≤ 0.01) percentage of IM fat in the LM compared with AN and WA-GD steers. In Exp. 2, WA-MB steers had a greater (P ≤ 0.01) percentage of IM fat in the LM compared with AN and WA-GB steers. The distribution of IM adipocyte area was unimodal at all biopsy collections, with IM adipocyte area becoming progressively larger as cattle age (P ≤ 0.01) and BW increased (P ≤ 0.01). Peroxisome proliferator activated receptor delta (PPARd) was upregulated earlier for WA-MD and WA-MB cattle compared with other steers at a similar DOF and BW (P ≤ 0.02; treatment × biopsy interaction). Peroxisome proliferator activated receptor gamma was upregulated (PPARg) at a lesser BW for WA-MB steers (P = 0.09; treatment × biopsy interaction), while WA-MD steers had a greater (P ≤ 0.04) overall mean PPARg mRNA expression compared with other steers. Glycerol-3-phosphate acyltransferase, lipin 1, and hormone sensitive lipase demonstrated mRNA expression patterns similar to PPARg and PPARd or CCAAT enhancer binding protein beta, which emphasizes their importance in marbling development and growth. Additionally, WA-MD and WA-MB steers often had a greater early mRNA expression of fatty acid transporters (fatty acid transport protein 1; P < 0.02; treatment × biopsy interaction) and binding proteins (fatty acid binding protein 4) compared with other steers. Cattle with a greater marbling propensity appear to upregulate adipogenesis at a younger chronological and physiological maturity through PPARd, PPARg, and possibly adipogenic regulating compounds, lysophosphatidic acid, and diacylglycerol. These genes and compounds could be used as potential markers for marbling propensity of cattle in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.