Rice (Oryza sativa L.) is the largest grain crop, accounting for about 40 % of the total grain production in China. In mid-July 2021, bacterial leaf streak-like disease emerged in rice varieties Chunyou584 and Yongyou2604 in Linyi city, Shandong Province, China. Disease incidences of the disease ranged from 80% to 90% in the surveyed fields. Infected rice leaves displayed dark green to yellowish-brown water-soaked thin streaks, and a large amount of beaded yellow oozes were observed on the lesions. After drying, there were gelatinous granules that were not easy to fall off and spread between leaf veins (Fig.S1A). According to the field symptoms of this disease, it was preliminarily suspected to be rice bacterial leaf streak caused by Xanthomonas oryzae pv. oryzicola (Xoc), which is a guaranteed disease in China. To isolate the causal agent, leaf discs (~1 cm2) of diseased leaves were collected from the margins of the lesions, surface sterilized and ground into pieces in sterile double distilled water. The 10-3, 10-4 and 10-5 dilutions were spread onto peptone sugar agar (PSA) and incubated at 28°C for 36 hours. Yellow mucous bacterial colonies were consistently obtained on PSA medium. To identify the pathogen, fragments of the 16S rDNA, leuS and rpoB were amplified and sequenced using the primers previously reported (Yu et al. 2021). Three strains (LY01, LY02 and LY03) showed identical colony morphology and LY01 was used for further analyses. Sequence analyses showed that the fragments of 16S rDNA (955 bp, GenBank accession number: OK261898), leuS (755 bp, GenBank accession number: OK298387) and rpoB (926 bp, GenBank accession number: OK298388) of strain LY01 shared 99.16%, 99.46% and 100% similarities with those of Pantoea ananatis TZ39 (GenBank accession numbers: CP081342.1 for 16S rDNA, MW981338.1 for leuS and MW981344.1 for rpoB), respectively, which suggest the pathogenic bacterial strain LY01 isolated is P. ananatis. In addition, the single colony of P. ananatis LY01 was shown as Fig. S2B. Furthermore, pathogenicity tests were also performed according to the following steps. Bacterial suspension at OD600=0.1 was inoculated into eight rice leaves of four healthy rice plants (Chunyou 584) at 25-33°C and 60%-80% relative humidity in the field using a clipping method (Yang et al. 2020) or spraying methods, and sterile distilled water was as negative control. The clipped leaves (Fig. S1B) and spray-inoculated leaves (Fig. S1C) showed dark green water-soaked streaks at 14 days after inoculation, respectively, which showed similar symptoms with those samples collected from the fields (Fig. S1A). On contrary, the control rice leaves remained healthy and symptomless (Fig. S2A). The bacterium was re-isolated in the inoculated rice leaves and the re-isolated bacterial isolates, which was confirmed by sequencing 16S rDNA, leuS and rpoB, incited the same symptoms as in fields, which fulfills Koch's postulates. In the past decade, P. ananatis was reported to result in grain discoloration and leaf blight in China (Yan et al. 2010; Xue et al. 2020, Yu et al. 2021), which could result in 40% - 60% yield losses. To our best knowledge, this is the first report of the bacterial leaf streak-likely disease occurred in Shandong Province caused by P. ananatis, so we named it as Pantoea leaf streak of rice. Although P. ananatis was also reported in Zhejiang province and Jiangxi province, which caused leaf streak lesions on rice, the disease symptoms are completely different from those of Pantoea leaf streak of rice. To the best of our knowledge, this is the first report of Pantoea leaf streak of rice caused by P. ananatis. This study provides sloid evidence that Pantoea leaf streak of rice in Eastern China can be caused by the new pathogen, P. ananatis, rather than Xoc as traditionally assumed. Disease development and quarantine of the new Pantoea leaf streak of rice disease caused by P. ananatis on rice need more attention in the near future.
Read full abstract