Let $L = {K_1} \cup \cdots \cup {K_\mu }$ be a tame link in ${S^3}$ of $\mu \geqslant 2$ components, and let ${L_\mu }$ be its sublink ${L_\mu } = L - {K_\mu }$. Let $H$ and ${H_\mu }$ be the abelianizations of ${\pi _1}({S^3} - L)$ and ${\pi _1}({S^3} - {L_\mu })$, respectively, and let ${t_1}, \ldots ,{t_\mu }$ (resp., ${t_1}, \ldots ,{t_{\mu - 1}}$) be the usual generators of $H$ (resp., ${H_\mu }$). If $\phi :{\mathbf {Z}}H \to {\mathbf {Z}}{H_\mu }$ is the (unique) ring homomorphism with $\phi ({t_i}) = {t_i}$ for $1 \leqslant i < \mu$, and $\phi ({t_\mu }) = 1$, then Torresâ second relation is equivalent to the statement that $\phi {E_1}(L) = (({\prod _{i < \mu }}t_i^{{l_i}}) - 1) \cdot {E_1}({L_\mu })$, where for $1 \leqslant i < \mu$, ${l_i}$ is the linking number ${l_i} = l({K_i}, {K_\mu })$. We prove that if $I{H_\mu }$ is the augmentation ideal of ${\mathbf {Z}}{H_\mu }$, then for any $k \geqslant 2$, \[ {E_{k - 1}}({L_\mu }) + \left ( {\left ( {\prod \limits _{i < \mu } {t_i^{{l_i}}} } \right ) - 1} \right )\cdot {E_k}({L_\mu }) \subseteq \phi {E_k}(L) \subseteq {E_{k - 1}}({L_\mu }) + I{H_\mu }\cdot {E_k}({L_\mu })\] and examples are given to indicate that either of these inclusions may be an equality. This theorem is used to generalize certain known properties of ${E_1}$ to the higher ideals.
Read full abstract