A genomic region of particular interest for sweet cherry (Prunus avium L.) breeding is a quantitative trait locus (QTL) “hotspot” on chromosome 2. QTLs for fruit size, firmness, sweetness, and flowering time are reported to map to this region. An understanding of genetic diversity, allele sources, linkage relationships, and historical recombinations is critical to enable the combining of favorable alleles at multiple loci. The objectives of this study were to characterize, visualize, and interpret the genetic structure of this previously identified QTL hotspot within North American sweet cherry breeding germplasm, using a pedigree-based haploblocking approach. Across the 29.4 cM (6.3 Mbp) region defined by single nucleotide polymorphism (SNP) information from the RosBREED cherry 6K SNP array v1, a total of 12 recombination events falling into six inter-marker regions were traced within the pedigree of elite and wild germplasm (n = 55). These recombinations defined five haploblocks containing 5–15 markers and exhibiting 7–11 haplotypes each. Over the entire QTL hotspot, 30 extended haplotypes were identified for which parental gametes could be determined. When the haploblocks and their haplotypes were used to explore genetic diversity, ancestry, and recombination patterns, and then integrated with previous QTL results for fruit size, the results indicated that favorable alleles at this QTL hotspot are under positive selection in breeding. The genetic framework provided by a haploblock approach and knowledge of haplotype-level diversity sets the stage for assigning breeding utility to these haplotypes.
Read full abstract