Abstract

In fungi, stable diploid genome arrangements are rare. Here we present evidence from nuclear intergenic DNA sequencing, microsatellite genotyping, and configuration of the mating-type locus to demonstrate two independent origins of persistent diploid genome organization in the Metarhizium majus species complex. Most taxa in the complex are genotypically haploid, with individual isolates consistently displaying a single allele across all nuclear loci, as well as having a single mating-type locus. In contrast, individuals of M. majus and the clade designated here MGT1 are shown to be diploid, based on a consistent finding of heterozygosity and the presence of both MAT1 and MAT2 mating-type loci. In single locus phylogenies, nuclear intergenic alleles of M. majus and MGT1 each form monophyletic groups, indicating that diploidy in both taxa likely originated by the union of conspecific individuals. Sequence divergence in the APN2/MAT1-1-3 and APN2/MAT2-1 intergenic spacers indicate the two MAT loci are physically separated in the genomes of both diploid taxa, although the linkage relationship of the MAT loci to one another is unknown. The presence of both mating genes in a single nucleus suggests these diploid genomes may represent a mating event that failed to complete meiosis. Whether or not these isolates are able to complete the sexual cycle under any conditions and form ascospores remains an open question.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call