PurposeThe step-stress accelerated test is the most appropriate statistical method to obtain information about the reliability of new products faster than would be possible if the product was left to fail in normal use. This paper presents the multiple step-stress accelerated life test using type-II censored data and assuming a cumulative exposure model. The authors propose a Bayesian inference with the lifetimes of test item under gamma distribution. The choice of the loss function is an essential part in the Bayesian estimation problems. Therefore, the Bayesian estimators for the parameters are obtained based on different loss functions and a comparison with the usual maximum likelihood (MLE) approach is carried out. Finally, an example is presented to illustrate the proposed procedure in this paper.Design/methodology/approachA Bayesian inference is performed and the parameter estimators are obtained under symmetric and asymmetric loss functions. A sensitivity analysis of these Bayes and MLE estimators are presented by Monte Carlo simulation to verify if the Bayesian analysis is performed better.FindingsThe authors demonstrated that Bayesian estimators give better results than MLE with respect to MSE and bias. The authors also consider three types of loss functions and they show that the most dominant estimator that had the smallest MSE and bias is the Bayesian under general entropy loss function followed closely by the Linex loss function. In this case, the use of a symmetric loss function as the SELF is inappropriate for the SSALT mainly with small data.Originality/valueMost of papers proposed in the literature present the estimation of SSALT through the MLE. In this paper, the authors developed a Bayesian analysis for the SSALT and discuss the procedures to obtain the Bayes estimators under symmetric and asymmetric loss functions. The choice of the loss function is an essential part in the Bayesian estimation problems.
Read full abstract