Abstract
The Kumaraswamy distribution (KD) is widely applied for modeling data in practical domains, such as medicine, engineering, economics, and physics. The present work proposes the Bayesian estimators of KD parameters through the use of type-II censoring data. Both E-Bayesian and Bayesian estimation approaches are briefly described, along with several loss functions, namely, linex loss function (LLF), weighted linex loss function (WLLF), and composite linex loss function (CLLF). In the Bayesian framework, gamma distribution has been utilized as a conjugate distribution in view of finding theoretical results. The E-Bayesian estimators for the hyperparameter using different distributions are developed. Moreover, a novel loss function referred to as the weighted composite loss function (WCLLF) in the estimation perspective is established. Finally, the Monte Carlo simulation approach is carried out to reveal that the new suggested loss function outperforms several counterparts in determining the shape parameter of the KD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.