In this paper, we consider the problem of finding the minimum number of searchers to sweep networks/graphs with special topological structures. Such a number is called the search number. We first study graphs, which contain only one cycle, and present a linear time algorithm to compute the vertex separation and the optimal layout of such graphs; by a linear-time transformation, we can find the search number of this kind of graphs in linear time. We also investigate graphs, in which every vertex lies on at most one cycle and each cycle contains at most three vertices of degree more than two, and we propose a linear time algorithm to compute their search number and optimal search strategy. We prove explicit formulas for the search number of the graphs obtained from complete k-ary trees by replacing vertices by cycles. We also present some results on approximation algorithms.
Read full abstract