Abstract
Several well-studied classes of graphs admit structural characterizations via proper 2-cutsets which lead to polynomial-time recognition algorithms. The algorithms so far obtained for those recognition problems do not guarantee linear-time complexity. The bottleneck to those algorithms is the Ω(nm)-time complexity to fully decompose by proper 2-cutsets a graph with n vertices and m edges. In the present work, we investigate the 3-connected components of a graph and propose the use of the SPQR-tree data structure to obtain a fully decomposed graph in linear time. As a consequence, we show that the recognition of chordless graphs and of graphs that do not contain a propeller as a subgraph can be done in linear time, answering questions in the existing literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.