Background and objectivesNeurological and functional recovery after traumatic spinal cord injury (SCI) is highly challenged by the level of the lesion and the high heterogeneity in severity (different degrees of in/complete SCI) and spinal cord syndromes (hemi-, ant-, central-, and posterior cord). So far outcome predictions in clinical trials are limited in targeting sum motor scores of the upper (UEMS) and lower limb (LEMS) while neglecting that the distribution of motor function is essential for functional outcomes. The development of data-driven prediction models of detailed segmental motor recovery for all spinal segments from the level of lesion towards the lowest motor segments will improve the design of rehabilitation programs and the sensitivity of clinical trials. MethodsThis study used acute-phase International Standards for Neurological Classification of SCI exams to forecast 6-month recovery of segmental motor scores as the primary evaluation endpoint. Secondary endpoints included severity grade improvement, independent walking, and self-care ability. Different similarity metrics were explored for k-nearest neighbor (kNN) matching within 1267 patients from the European Multicenter Study about Spinal Cord Injury before validation in 411 patients from the Sygen trial. The kNN performance was compared to linear and logistic regression models. ResultsWe obtained a population-wide root-mean-squared error (RMSE) in motor score sequence of 0.76(0.14, 2.77) and competitive functional score predictions (AUCwalker = 0.92, AUCself-carer = 0.83) for the kNN algorithm, improving beyond the linear regression task (RMSElinear = 0.98(0.22, 2.57)). The validation cohort showed comparable results (RMSE = 0.75(0.13, 2.57), AUCwalker = 0.92). We deploy the final historic control model as a web tool for easy user interaction (https://hicsci.ethz.ch/). DiscussionOur approach is the first to provide predictions across all motor segments independent of the level and severity of SCI. We provide a machine learning concept that is highly interpretable, i.e. the prediction formation process is transparent, that has been validated across European and American data sets, and provides reliable and validated algorithms to incorporate external control data to increase sensitivity and feasibility of multinational clinical trials.